

Coordination of cell division

 A multicellular organism needs to coordinate cell division across different tissues & organs

Frequency of cell division

- Varies by cell type
 - embryo
 - cell cycle < 20 minute
 - skin cells
 - 12-24 hour cycle
 - liver cells
 - divide once every year or two
 - mature nerve cells & muscle cells
 - do not divide at all after maturity (?)
 - permanently in G₀

Checkpoint control system

STOP & GO chemical signals at critical points

signal if key process has been completed

correctly

3 major checkpoints:

- <u>G</u>₁
 - can DNA synthesis begin?
- <u>G</u>₂
 - has DNA synthesis been completed correctly?
- Spindle checkpoint (M)
 - are all chromosomes attached to spindle?
 - can sister chromatids separate correctly?

G₁ checkpoint

- Most critical
 - primary decision point: "restriction point"
 - if cell receives "GO" signal, it divides
 - if cell does <u>not</u> receive signal, it exits cycle & switches to G_n phase
 - non-dividing, working state

Cell cycle signals

- cyclins
 - regulatory proteins
 - levels cycle in the cell

activated Cdk

- <u>Cdks</u> cyclin-dependent kinases
 - activates or inactivates proteins
- Cdk-cyclin complex (MPF)
 - triggers different stages of cell cycle

Cyclins & Cdks

1970s-80s | 2001

 Interaction of Cdk's & cyclins triggers the stages of the cell cycle

Spindle checkpoint **G₂ / M checkpoint** Chromosomes attached Replication completed at metaphase plate DNA integrity Inactive **Active Active** Inactive Cdk/G₂ (M) **APC** cytokinesis cyclin (MPF) G_2 mitosis G_1 S Cdk / G₁ cyclin **Inactive** Active **MPF** = Mitosis G₁ / S checkpoint **Promoting Factor** Growth factors

Nutritional state of cell

Size of cell

APC = Anaphase

Promoting Complex

External signals

- Growth factors
 - Proteins released by body cells stimulate other cells to divide – lead to:
 - density-dependent inhibition
 - crowded cells stop dividing
 - anchorage dependence
 - to divide cells must be attached to a substrate

Cancer & Cell Growth

- Cancer is a failure of cell division control
 - unrestrained, uncontrolled cell growth
- What control is lost?
 - lose checkpoint stops
 - Gene p53 stops division if DNA damaged
 - ALL cancers have to shut down p53 activity

p53 discovered at Stony Brook by Dr. Arnold Levine

G₁ checkpoint

Control system

G, checkpoint

p53 — master regulator gene

Growth Factors and Cancer

- Proto-oncogenes
 - Protein coded by this gene activates cell division
 - Become "oncogenes" (cancer-causing) when mutated
 - if switched <u>"ON"</u> can cause cancer
- Tumor-suppressor genes
 - Protein coded by this gene inhibits cell division
 - if switched "OFF" can cause cancer
 - example: p53

Development of Cancer

 Cancer develops only after a cell experiences ~6 key mutations ("hits")

- unlimited growth
 - turn <u>on</u> growth promoter genes
- ignore checkpoints
 - turn off tumor suppressor genes (p53)
- escape apoptosis
 - turn off suicide genes
- immortality = unlimited divisions
 - turn on chromosome maintenance genes
- promotes blood vessel growth
 - turn on blood vessel growth genes
- overcome anchor & density dependence
 - turn off touch-sensor gene

(b) Cancer cells

Cancer cells do not exhibit anchorage dependence or density-dependent inhibition.

It's like an out-of-control car with many systems failing!

What causes these "hits"?

- Mutations in cells can be triggered by
 - UV radiation
 - chemical exposure
 - radiation exposure
 - heat

- ◆ cigarette smoke
- pollution
- age
- genetics

Tumors = Mass of abnormal cells

- Benign tumor
 - abnormal cells remain at original site as lump
 - -p53 has halted cell divisions
 - most do not cause problems & can be removed
- Malignant tumor
 - cells leave original site
 - –lose attachment to nearby cells
 - —carried by blood & lymph to other tissues. start more tumors = metastasis

Traditional treatments for cancers

- Target rapidly dividing cells
 - high-energy radiation: kills rapidly dividing cells
 - chemotherapy
 - stop DNA replication, mitosis, or blood vessel growth

New "miracle drugs"

- Drugs targeting proteins (enzymes) found only in cancer cells
 - Gleevec
 - treatment for adult leukemia (CML)
 & stomach cancer (GIST)
 - 1st successful drug targeting only cancer cells

