

Bacterial metabolism

- Bacteria need to respond quickly to changes in their environment
 - if they have enough of a product, need to stop production

- why? waste of energy to produce more
- how? stop production of enzymes for synthesis
- if they find new food/energy source, need to utilize it quickly
 - why? metabolism, growth, reproduction
 - how? start production of enzymes for digestion

How to Regulate Metabolism?

- Feedback inhibition
 - The product acts
 as an <u>allosteric</u>
 <u>inhibitor</u> of the 1st
 enzyme in tryptophan
 pathway
 - but this is wasteful production of enzymes

What kind of feedback do we have here?

A Different way to Regulate Metabolism

- Gene regulation
 - Don't block the
 enzyme's function,
 block transcription of
 genes for all enzymes
 in tryptophan
 pathway
 - saves energy by not wasting it on unnecessary protein synthesis

Now, that's a good idea from a lowly bacterium!

Gene regulation in bacteria

- Cells vary amount of specific enzymes by regulating gene transcription
 - turn genes on or turn genes off
- if bacterium has enough tryptophan then it doesn't need to make enzymes used to build tryptophan
 - if bacterium encounters new sugar (energy source), like lactose, then it needs to start making enzymes used to digest lactose

Bacteria group genes together

- Operon
 - genes grouped together with related functions
 - <u>promoter</u> = RNA polymerase binding site
 - single promoter controls transcription of all genes in operon
 - transcribed as one unit & a single mRNA is made
 - <u>operator</u> = DNA binding site of <u>repressor protein</u>

So how can these genes be turned off?

- Repressor protein
 - binds to DNA at operator site
 - blocking RNA polymerase
 - blocks transcription

Operon model

Repressor protein turns off gene by blocking RNA polymerase binding site.

Repressible operon: tryptophan

Tryptophan operon What happens when tryptophan is present? Don't need to make tryptophan-building enzymes

Tryptophan is allosteric regulator of repressor protein

Inducible operon: lactose

Lactose operon

What happens when lactose is present?

Need to make lactose-digesting enzymes

Lactose is allosteric regulator of repressor protein

Jacob & Monod: lac Operong61 | 1965

- Francois Jacob & Jacques Monod
 - first to describe operon system
 - coined the phrase "operon"

Jacques Monod

Francois Jacob

Operon summary

- Repressible operon
 - usually functions in <u>anabolic</u> ('building') pathways
 - <u>synthesizing</u> end products
 - when end product is present in excess, cell allocates resources to other uses
- Inducible operon
 - usually functions in <u>catabolic</u> ('destroying') pathways,
 - digesting nutrients to simpler molecules
 - produce enzymes only when nutrient is available
 - cell avoids making proteins that have nothing to do,
 cell allocates resources to other uses

Review Questions

- A mutation that inactivates the regulator gene of a repressible operon in an *E. coli* cell would result in
 - A. continuous transcription of the structural gene controlled by that regulator.
 - B. complete inhibition of transcription of the structural gene controlled by that regulator.
 - C. irreversible binding of the repressor to the operator.
 - D. inactivation of RNA polymerase.
 - E. both B and C.

- A mutation that makes the regulatory gene of an inducible operon nonfunctional would result in
 - A. continuous transcription of the operon's genes.
 - B. reduced transcription of the operon's genes.
 - C. accumulation of large quantities of a substrate for the catabolic pathway controlled by the operon.
 - D. irreversible binding of the repressor to the promoter.
 - E. overproduction of cAMP receptor protein.

- 3. A mutation that renders nonfunctional the product of a regulatory gene for an inducible operon would result in *
 - A. continuous transcription of the genes of the operon.
 - B. complete blocking of the attachment of RNA polymerase to the promoter.
 - C. irreversible binding of the repressor to the operator.
 - D. no difference in transcription rate when an activator protein was present.
 - E. negative control of transcription.