

The Chemistry of Life

Why are we studying chemistry?

Chemistry is the foundation of Biology

The World of Elements

Life requires ~25 chemical elements

- About 25 elements are essential for life
 - ◆ Four elements make up 96% of living matter:
 - carbon (C)

hydrogen (H)

oxygen (O)

- nitrogen (N)
- Four elements make up most of remaining 4%:
 - phosphorus (P)
- calcium (Ca)

• sulfur (S)

potassium (K)

Everything is made of matter

Matter is made of atoms

Proton • +

Neutron © 0

Electron -

Differences in Elements

- Atoms of each element
 - Are distinguished by a specific number of protons

Atoms

- Atomic number = number of protons
 - determines what element it is

Atomic mass/weight = average number of protons and neutrons

Isotopes = atoms with unusual numbers of neutrons

There are always a certain percent of atoms that are isotopes

Radioactive isotopes are unstable and release energy when they breakdown "decay"

Carbon Isotopes

Carbon – 12 6 Protons 6 Neutrons 6 Electrons

Carbon – 13 6 Protons 7 Neutrons 6 Electrons

Carbon-14 6 Protons 8 Neutrons 6 Electrons

Radioactive isotopes can help us

- Useful as tracers
 - Our body treats isotopes like any other atom
 - Can monitor where atoms go in living organisms

Medical Diagnosis

Radioactive tracers often used for diagnosis

Figure 2.5B

Dangers

- ■The energy released can damage cells' DNA
 - In Radiation sickness cells die due to DNA damage
 - Cancer is caused by damage to DNA that controls cell division

Bonding properties

- Effect of electrons
 - electrons determine chemical behavior of atom
 - depends on <u>number</u>
 of electrons in atom's
 outermost shell
 - valence shell

How does this atom behave?

Bonding properties

What's the magic number?

- Effect of electrons
 - chemical behavior of an atom depends on number of electrons in its valence shell

How does this atom behave?

How does this atom behave?

Elements & their valence shells

Elements & their valence shells

Chemical reactivity

- Atoms tend to
 - complete a partially filled valence shell or
 - empty a partially filled valence shell

This tendency drives chemical reactions...

Hydrogen bond

Bonds in Biology

- Weak bonds
 - ◆ lonic
 - hydrogen bonds
 - attraction between + and -

hydrophobic & hydrophilic interactions

Covalent bond

• interaction with H₂O

- Strong bonds
 - covalent bonds

Ionic Bonding

- Electron transferred from one atom to the other
- Electronegativities very different (opposite sides of periodic table)
 - Very different attraction to valance electrons

Ionic Bonding

Atoms gain or lose e- to create IONS

The opposite charges cause ions to stick together

Results in an ionic bond held together by charge

Not a very strong bond

Covalent bonds

- Why are covalent bonds strong bonds?
 - two atoms share a pair of electrons
 - both atoms holding onto the electrons
 - very stable
- Forms molecules

Multiple covalent bonds

- 2 atoms can share >1 pair of electrons
 - double bonds
 - 2 pairs of electrons
 - triple bonds
 - 3 pairs of electrons
- Very strong bonds

Nonpolar covalent bond

- Pair of electrons shared equally by 2 atoms
 - ◆ <u>example</u>: hydrocarbons = C_xH_x
 - methane (CH₄)

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

QuickTime™ and a
TIFF (Uncompressed) decompressor
are needed to see this picture.

balanced, stable, good building block

Polar covalent bonds

- Pair of electrons shared unequally by 2 atoms
 - ◆ <u>example</u>: water = H₂O
 - oxygen has stronger "attraction" for the electrons than hydrogen
 - oxygen has higher electronegativity
 - water is a <u>polar molecule</u>
 - ◆ + vs poles
 - leads to many interesting properties of water...

Hydrogen bonding

- Polar water creates molecular attractions
 - attraction between positive H in one H₂O molecule to negative O in another H₂O
 - also can occur wherever an -OH exists in a larger molecule
- Weak bond

Chemistry of Life

Properties of Water

More about Water

Why are we studying water?

All life occurs in water

inside & outside the cell

Chemistry of water

H₂O molecules form H-bonds with each other

- ◆ +H attracted to -O
- creates a sticky molecule

Hydrogen bond

Elixir of Life

- Special properties of water
 - 1. cohesion & adhesion
 - surface tension, capillary action
 - 2. good solvent
 - many molecules dissolve in H₂O
 - hydrophilic vs. hydrophobic
 - 3. lower density as a solid
 - ice floats!
 - 4. high specific heat
 - water stores heat
 - 5. high heat of vaporization
 - heats & cools slowly

1. Cohesion & Adhesion

- Cohesion
 - ♦ H bonding between H₂O molecules
 - water is "sticky"
 - surface tension
 - drinking straw
- Adhesion

◆ H bonding between H₂O & other substances

- capillary action
- meniscus
- water climbs up paper towel or cloth

How does H₂O get to top of trees?

Transpiration is built on cohesion & adhesion

2. Water is the solvent of life

- Polarity makes H₂O a good solvent
 - ◆ polar H₂O molecules surround + & ions
 - ◆ solvents dissolve solutes creating solutions

What dissolves in water?

- Hydrophilic
 - ◆ substances have attraction to H₂O

polar)r non-polar?

What doesn't dissolve in water?

Hydrophobic

substances that don't have

an attraction to H₂O

polar or non-polar?

fat (triglycerol)

Oh, look hydrocarbons!

3. The special case of ice

Most (all?) substances are more dense when they are solid, but not water...

Ice floats!

H bonds form a crystal

And this has made all the difference!

Ice floats

Liquid water
Hydrogen bonds
constantly break and re-form

Why is "ice floats" important?

- Oceans & lakes don't freeze solid
 - surface ice insulates water below
 - allowing life to survive the winter
 - ♦ if ice sank...
 - ponds, lakes & even oceans would freeze solid
 - in summer, only upper few inches would thaw
 - seasonal turnover of lakes
 - sinking cold H₂O cycles nutrients in autumn

4. Specific heat

- H₂O resists changes in temperature
 - high specific heat
 - takes a lot to heat it up
 - takes a lot to cool it down
- H₂O moderates temperatures on Earth

Ionization of water & pH

- Water ionizes
 - ◆ H⁺ splits off from H₂O, leaving OH⁻
 - if [H+] = [-OH], water is neutral
 - if [H+] > [-OH], water is <u>acidic</u>
 - if [H+] < [-OH], water is <u>basic</u>
- pH scale
 - how acid or basic solution is
 - $1 \rightarrow 7 \rightarrow 14$

$$H_2O \rightarrow H^+ + OH^-$$

pH Scale

tenfold change in H+ ions

$$pH1 \rightarrow pH2$$

 $10^{-1} \rightarrow 10^{-2}$

10 times less H+

$$pH8 \rightarrow pH7$$

 $10^{-8} \rightarrow 10^{-7}$

10 times more H+

$$pH10 \rightarrow pH8$$

 $10^{-10} \rightarrow 10^{-8}$

100 times more H+

H⁺ Ion Concentration

10° —

Examples of Solutions

0 — Hydrochloric acid

— 2 — Stomach acid, Lemon juice

— 3 — Vinegar, cola, beer

—4 — Tomatoes

pH

— 5 — Black coffee, Rainwater

—6 — Urine, Saliva

—7 — Pure water, Blood

−8 −− Seawater

─9 ── Baking soda

-10 Great Salt Lake

-11 --- Household ammonia

-12- Household bleach

—13—— Oven cleaner

—14—— Sodium hydroxide

Buffers & cellular regulation

- pH of cells must be kept ~7
 - pH affects shape of molecules
 - shape of molecules affect function
 - pH affects cellular function
- Control pH by <u>buffers</u>
 - ◆ reservoir of H⁺
 - donate H+ when [H+] falls
 - absorb H+ when [H+] rises

Review Questions

- A. The following are *pH* values: cola-2; orange juice-3; beer-4; coffee-5; human blood-7.4. Which of these liquids has the highest molar concentration of OH-?
 - 1. cola
 - orange juice
 - 3. beer
 - 4. coffee
 - 5. human blood

B. Based on your knowledge of the polarity of water, the solute molecule is most likely *

- 1. positively charged.
- 2. negatively charged.
- 3. neutral in charge.
- 4. hydrophobic.
- 5. nonpolar.

C. If the pH of a solution is increased from pH 8 to pH 9, it means that the

- concentration of H+ is 10 times greater than what it was at pH 8.
- concentration of H+ is 100 times less than what it was at pH 8.
- concentration of OH- is 10 times greater than what it was at pH 8.
- 4. concentration of OH- is 100 times less than what it was at pH 8.
- 5. concentration of H+ is greater and the concentration of OH- is less than at pH 8.

D. Acid precipitation has lowered the pH of a particular lake to 4.0. What is the *hydroxide* ion concentration of the lake?

- 1. **10**-7 *M*
- 2. **10**⁻⁴ *M*
- з. **10**⁻¹⁰ М
- 4. **10**⁻¹⁴ *M*
- 5. **10** *M*