The Star of The Show (Ch. 3)

Why study Carbon?

- All of life is built on carbon
- Cells
 - $^72\% H_2O$
 - ~25% carbon compounds
 - carbohydrates
 - lipids
 - proteins
 - nucleic acids
 - -~3% salts
 - Na, Cl, K...

Chemistry of Life

- Organic chemistry is the study of <u>carbon</u> compounds
- C atoms are versatile building blocks
 - bonding properties
 - 4 stable covalent bonds

Characteristics of Carbon

- Abundant
- Has 4 valence electrons → forms 4 bonds
- Forms Covalent (strong) bonds
- Forms chains with other carbons
- Can form double and triple bonds
- Stores energy in C H bonds

Hydrocarbons can grow

Macromolecules

- Smaller organic molecules join together to form larger molecules
 - macromolecules
- 4 major classes of macromolecules:
 - <u>carbohydrates</u>
 - lipids
 - proteins
 - nucleic acids

Polymers

 Long molecules built by linking repeating building blocks in a chain

– monomers

How to build a pol

You gotta be open to "bonding!

H₂O

- joins monomers by "taking" H₂O out
 - one monomer donates OH⁻
 - other monomer donates H⁺

– requires <u>energy</u> & <u>enzymes</u>

HO - H HO - H enzyme

Dehydration synthesis

Condensation reaction

но — — — н

How to break down a polymer

- Digestion
 - use H₂O to breakdown polymers
 - reverse of dehydration synthesis
 - cleave off one monomer at a time

requires enzymes

releases energy

Hydrolysis

Digestion

Breaking up

is hard to do.

energy molecules

Carbohydrates

Carbohydrates are composed of C, H, O

- Function:
 - energy

$$(CH_2O)_x \longrightarrow C_6H_{12}O_6$$

- energy storage
- raw materials
- structural materials
- Monomer: sugars
- ex: sugars, starches, cellulose

Sugars

- Most names for sugars end in <u>-ose</u>
- Classified by number of carbons
 - -6C = hexose
 - -5C = pentose
 - -3C = triose

Glyceraldehyde

Simple & complex su

- Monosaccharides
 - glucose
- Disaccharides
 - <u>sucrose</u>
- Polysaccharides
 - glycogen
 - Starch
 - Chiten

Glucose

Building sugars

Dehydration synthesis

Polysaccharides

- Function:
 - energy storage
 - starch (plants)
 - glycogen (animals)
 - in liver & muscles
 - structure
 - <u>cellulose</u> (plants)
 - <u>chitin</u> (arthropods & fungi)

Linear vs. branched polysaccharides

Digesting starch vs. cellulose

starch easy to digest

cellulose hard to digest

Lipids

long term energy storage concentrated energy

Lipids

- Lipids are composed of C, H, O
 - long hydrocarbon chains (H-C)
 - H:O ratio >> 2:1
- 3 Main types
 - fats
 - phospholipids
 - steroids
- Do not form polymers
 - big molecules made of smaller subunits
 - not a continuing chain

Saturated

- All C bonded to H
- No C=C double bonds
 - long, straight chain
 - most animal fats
 - solid at room temp.
 - contributes to
 cardiovascular disease
 (atherosclerosis)
 = plaque deposits

Unsaturated 1

- C=C double bonds in the fatty acids
 - plant & fish fats
 - vegetable oils
 - liquid at room temperature
 - the kinks made by double bonded C prevent the molecules from packing tightly together

Saturated vs. unsaturated

saturated unsaturated

Phospholipids

- Structure:
 - glycerol + 2 fatty acids + PO₄

PO₄ = negatively charged

It's just like a penguin...

A head at one end & a tail at the other!

Phospholipids

- Hydrophobic or hydrophilic?
 - fatty acid tails = hydrophobic
 - $-PO_4$ head = <u>hydrophillic</u>
 - split "personality"

Come here, No, go away! Come here, No, go away!

interaction with H₂O is complex & <u>very</u> important!

Phospholipids in water

- Hydrophilic heads "attracted" to H₂O
- Hydrophobic tails "hide" from H₂O
 - can self-assemble into "bubbles"
 - bubble = "micelle"
 - can also form a <u>phospholipid bilayer</u>

early evolutionary stage of cell?

Why is this important?

- Phospholipids create a barrier in water
 - define outside vs. inside
 - they make <u>cell membranes!</u>

Steroids

- Structure:
 - 4 fused C rings + ??
 - different steroids created by attaching different functional groups to rings
 - examples: cholesterol, sex hormones

Cholesterol

Important component of cell membrane

helps keep cell membranes fluid & flexible

From Cholesterol → Sex Hormones

What a big difference a few atoms can make!

Proteins

Multipurpose molecules

Proteins

- Most structurally & functionally diverse group
- Function: involved in almost everything
 - enzymes (pepsin, DNA polymerase)
 - <u>structure</u> (keratin, collagen)
 - carriers & transport (hemoglobin, aquaporin)
 - cell communication
 - signals (insulin & other hormones)
 - receptors
 - <u>defense</u> (antibodies)
 - movement (actin & myosin)
 - storage (bean seed proteins)

Proteins

- Structure
 - monomer = <u>amino acids</u>
 - 20 different amino acids
 - polymer = <u>polypeptide</u>

large & complex molecules

complex 3-D shape

hemoglobin

Rubisco

Amino acids

- Structure
 - central carbon
 - amino group
 - carboxyl group (acid)
 - R group (side chain)
 - variable group
 - different for each amino acid
 - confers unique chemical properties to each amino acid
 - like 20 different letters of an alphabet
 - can make many words (proteins)

Oh, I get it! amino = NH₂ acid = COOH

Building proteins

- Peptide bonds
 - covalent bond between NH₂ (amine) of one amino acid & COOH (carboxyl) of another

Protein structure & function

- Function depends on structure
 - 3-D structure
 - twisted, folded, coiled into unique shape

Primary (1°) structure

- Order of amino acids in chain
 - amino acid sequence determined by gene (DNA)
 - slight change in amino acid sequence can make all the difference!

lysozyme: enzyme in tears & mucus that kills bacteria

Sickle cell anemia

Just 1 out of 146 amino acids!

I'm hydrophilic!

But I'm hydrophobic!

Secondary (2°) structure

folding along short sections of polypeptide

H bonds between carboxyls and amines of amino

acids

- forms sections of3-D structure
 - <u>α-helix</u>
 - **β-pleated sheet**

Tertiary (3°) structure

- "Whole molecule folding"
 - interactions between R groups of amino acids
 - hydrophobic R groups
 - nonpolar amino acids cluster away from water
 - H bonds & ionic bonds
 - disulfide bridges
 - covalent bonds between sulfurs in R groups

Quaternary (4°) structure

- Only if more than one polypeptide chain bonded together
- How the multiple chains bond together

collagen = skin & tendons

hemoglobin

Protein structure (review)

Nucleic Acids

Information storage

Nucleic Acids

- Function:
 - genetic material
 - stores information
 - genes
 - blueprint for building proteins
 - » DNA \rightarrow RNA \rightarrow proteins
 - transfers information
 - blueprint for new cells
 - blueprint for next generation

proteins

DNA \rightarrow RNA \rightarrow protein: information flow in a cell

Nucleic Acids

- Examples:
 - RNA (ribonucleic acid)
 - single helix
 - DNA (deoxyribonucleic acid)
 - double helix
- Structure:
 - monomers = <u>nucleotides</u>

Nucleotides

- 3 parts
 - nitrogen base (C-N ring)
 - pentose sugar (5C)
 - <u>ribose</u> in RNA
 - deoxyribose in DNA

– phosphate (PO₄) group

Are nucleic acids charged molecules?

DNA molecule

- Double helix
 - H bonds between bases join the 2 strands

• A :: T

• C :: G

H bonds?
Why is this important?

