Name	Class	Date	

13.4 Gene Regulation and Expression

Prokaryotic Gene Regulation

1. How do	prokaryotes conserve energy?
2. How do	DNA-binding proteins in prokaryotes regulate genes?
3. What is	an operon?
4. What is	in the <i>lac</i> operon in <i>E. coli</i> ?
5. What is	the function of the genes in the <i>lac</i> operon of <i>E. coli</i> ?
6. What tur	rns the <i>lac</i> operon off?
7. How doe	es a repressor protein turn off the <i>lac</i> operon?
8. How doe	es lactose turn on the <i>lac</i> operon?
 Eukary	otic Gene Regulation
9. In what to prokaryoua.	two ways is gene regulation in eukaryotes different from gene regulation in otes?
<u>b.</u>	
10. What is a	a TATA box? What does a TATA box do?
	e transcription factors and what do they do?

12. Explain how gene regulation makes cell s	specialization possible.
13. Explain how the process of RNA interfer	ence works.
Genetic Control of Deve	lopment
For Questions 16–23, write the letter of the	e correct answer on the line at the left.
14. As an embryo develops, different	
A. mRNA and <i>lac</i> repressors.	C. transcription factors and repressors.
B. operons and operators.	D. promoters and operators.
•	become specialized in structure and function is
A. transcription.	C. differentiation.
B. gene expression.	D. RNA interference.
16. Homeotic genes are	
A. regulator genes that bind to op	perons in prokaryotes.
B. master control genes that regulated body.	late organs that develop in specific parts of the
C. parts of the silencing complex interference.	that regulates gene action through RNA
D. base sequences complementar	y to sequences in microRNA.
17. What role do homeobox genes pla	y in cell differentiation?
development and differentiation	
B. They block certain gene expre	
C. They cut double-stranded loop	
D. They attach to a cluster of proand destroys certain RNA.	teins to form a silencing complex, which binds to
18. In flies, the group of homeobox go segment of a fly's body is the group	enes that determines the identities of each up known as
A. silencing complexes.	C. operators.
B. promoters.	D. Hox genes.
19. Clusters of Hox genes are found i	n
A. flies only.	C. plants only.
B. flies and frogs only.	D. nearly all animals.
20. The "switches" that trigger particular in cells and tissues are	ular patterns of development and differentiation
A. mRNA molecules.	C. silencing complexes.
B. master control genes.	D. Dicer enzymes.